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During the 2015 UNFCCC Conference of the Parties in Paris, 
world leaders agreed to limit global temperature increase 
relative to pre-industrial levels to well below 2 °C and pursue 

efforts to meet a 1.5 °C target by 2100 (refs. 1,2). These targets require 
rapid declines in greenhouse gas emissions, reaching net zero by 
mid-century3,4. Recent progress on mitigation has been highly 
inconsistent with this goal5,6. With emissions still rising7, integrated 
assessment modelling (IAM) scenarios of the global economy and 
climate system have increasingly relied on the presumed ability to 
deploy net-negative emissions activities to meet these ambitious 
climate targets8,9. There are a number of ways by which to remove 
already emitted CO2 from the atmosphere10–14. Yet the vast majority 
of IAM scenarios include just two land-based negative emissions 
technologies (NETs): bioenergy with carbon capture and storage 
(BECCS) and afforestation (Extended Data Fig. 1)15,16. The degree 
to which these NETs would compete for productive agricultural and 
natural land, as well as their impact on water resources if deployed 
at climatically relevant (that is, GtCO2 yr−1) scales has raised  
concerns about the viability of these approaches17–21.

In light of the foreseeable tradeoffs inherent to land-based nega-
tive emissions approaches, recent work has focused on developing 
direct air capture (DAC) technology. DAC is an engineered separa-
tion process that uses aqueous or amine sorbents to remove CO2 
from ambient air, compress it and inject it into geologic reservoirs. 
The physical footprint of these units would be much smaller than 
BECCS or afforestation, and it would not require any particular 
land type, only proximity to a geologic reservoir for storage14,22,23. 
However, CO2 exists in low concentrations in ambient air, so DAC is 
likely to be energy intensive to deploy. This is intuitively the case for 
DAC processes that require combustion heat, for which fossil fuels 
are currently the most economical source. However, processes that 
are capable of using renewable energy or waste heat would still entail 
large-scale construction of infrastructure (for example, solar photo-
voltaic) for the purpose of disposing of CO2 emitted previously. Due 
to these very high assumed costs, DAC has not been included in 

many integrated modelling scenarios to date10,24. However, multiple 
companies now have commercial-scale prototypes, claiming much 
lower costs than previously estimated25–29, and several recent IAM 
studies have incorporated DAC into their mitigation and negative 
emissions portfolios23,30–32. In these deep decarbonization scenarios, 
the availability of DAC can reduce mitigation costs, avoid imme-
diate stranding of fossil fuel assets and benefit energy-exporting 
countries by preserving the value of their fossil fuel reserves under 
stringent climate policies32. Meeting a 1.5 °C temperature target may 
now only be possible if large-scale DAC is available30. Relying on 
the future availability of DAC and then failing to achieve the rapid 
scale-ups to global-scale deployment could risk overshooting this 
target by up to 0.8 °C (ref. 23).

Increased near-term mitigation effort is required to avoid the 
steepest tradeoffs associated with future rapid decarbonization, 
and to avoid ‘lock-in’ to large-scale deployment of NETs to meet 
the Paris targets31,33. But the emergence of DAC as a possible cli-
mate mitigation strategy makes it important to gain understanding 
of its side effects if deployed at GtCO2 yr−1 scales, weighed against 
its potential to reduce some of the undesirable impacts of BECCS 
and afforestation (for example, land and water demand) and to 
offset emissions from expensive-to-mitigate sectors (for example, 
liquid fuels for transportation)34. The unprecedented financial 
transfers35,36 (for example, emissions offsets and direct public subsi-
dies) that would be required to reach net-negative emissions glob-
ally make it even more critical to understand these potential side 
effects in advance, and minimize the extent to which the deploy-
ment of any NET generates unintended consequences of its own16. 
Previous work on the potential benefits and side effects of DAC has 
emphasized its ability to reduce energy system transition burdens 
(for example, CO2 prices), while itself requiring large amounts of 
energy23,30,32. It has been shown that DAC would substantially reduce 
water use for negative emissions compared with total evapotranspi-
ration from bioenergy crop and forest cultivation, plus additional 
water demand for bioelectricity generation20,23. However, it is also 
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important to understand how different NETs could affect water 
quality (for example, through thermal and chemical pollution) 
associated with withdrawals from surface and groundwater, as well 
as consumption (that is, evaporative losses) that contribute to water 
scarcity37,38. Proper contextualization of each of these relative to 
other current and projected anthropogenic perturbations to water 
resources is also imperative to best inform policymakers and other 
stakeholders considering multiple environmental objectives (for 
example, water conservation and climate mitigation). The land-use 
impacts of DAC are considered negligible compared with BECCS 
and afforestation, but detailed quantitative assessment of the impli-
cations for global agriculture systems (for example, food prices) is 
largely missing from the IAM literature on DAC and other NETs. In 
particular, spatially disaggregated results for where different NETs 
might be deployed under different policies and assessments of the 
associated impacts on food, water and energy systems are needed to 
better inform equity considerations of international policymaking.

Here we use the Global Change Assessment Model (GCAM), a 
technology-rich IAM with detailed treatment of the energy, water 
and land sectors39, to evaluate the impacts and tradeoffs of a portfo-
lio of three distinct types of NET (afforestation, BECCS and DAC) 
in meeting two representative emissions pathways from the IPCC 
Special Report on Global Warming of 1.5 °C (ref. 3). We investigated 
whether DAC could help ameliorate costly food–water–energy 
tradeoffs when deployed alongside BECCS, afforestation and other 
technology options for avoiding CO2 emissions altogether (for 
example, renewables and point-source CCS). In light of recent, 
more optimistic estimates for the cost of DAC technology, we inves-
tigate when this technology could begin to play a role in the miti-
gation portfolio under aggressive near-term decarbonization policy 
that seeks to limit the overdraft of a small and rapidly dwindling 
1.5 °C global emissions budget. Additionally, the side effects associ-
ated with increased negative emissions requirements resulting from 
delayed mitigation ambition for meeting the same end-of-century 
temperature goal are quantified. Finally, we provide greater resolu-
tion as to where DAC and other negative emissions activities and 
associated side effects could take place spatially, at the scale of geo-
political regions. Throughout our analysis, we compare land, water 
and energy use for each of these NETs with other current-day and 
projected anthropogenic perturbations to these resources.

Effects of BECCS and afforestation
DAC deployment may never reach GtCO2 yr−1 scales because it is 
too expensive or otherwise infeasible. The implications for energy, 
water and food systems associated with meeting the low-overshoot 
emissions trajectory without the use of DAC are shown in Fig. 1. 
The higher overshoot trajectory was infeasible without the avail-
ability of DAC due to constraints on agricultural and forested land 
expansion for agricultural production and climate mitigation. In 
the low-overshoot trajectory, BECCS is used to produce 226 EJ yr−1 
in 2100, over 38% of current-day primary energy demand40. The 
use of modern biomass without CCS for heat, electricity genera-
tion and liquid fuels production, as well as ‘traditional biomass’ for 
fuel, is projected to decline from a combined 83 EJ yr−1 at initiation 
of our imposed climate policy in 2025 to 16 EJ yr−1 in 2100. The 
role of fossil fuels is substantially reduced, and the use of unabated 
coal rapidly declines to near zero following initiation of the climate 
policy. Land for dedicated bioenergy crop production expands 
rapidly to over 5 Mkm2, a land area equivalent to over 50% of the 
land area of the United States and over 25% of present-day global 
cropland area41. Net deforestation is halted by 2025, but the largest 
increases in forested land area occur later in the century as institu-
tions for pricing and enforcing pricing of land-use change carbon 
are assumed to be phased in. The increase in land devoted to bio-
energy crops and afforestation comes at the expense of grasslands, 
pasture and production of other crops. These results are broadly 

consistent with previous IAM studies incorporating BECCS and 
afforestation to meet aggressive climate targets42. Evaporative losses 
from biomass irrigation and thermal bioelectricity generation are 
large, reaching a peak of 187 km3 yr−1 in 2050. This is equivalent 
to nearly 15% of irrigation water consumption in 2010 (refs. 37,43). 
Fertilizer use for bioenergy crop cultivation peaks in 2045 at nearly 
30% of current-day fertilizer demand. Such drastic increases in fer-
tilizer demand for the purposes of climate change mitigation would 
have large environmental side effects, such as water quality degrada-
tion44,45, and also climate effects that run counter to CO2 removal as 
excess soil nitrogen is converted to N2O (ref. 21).

We report results for the lower (that is, more optimistic) esti-
mates of energy and cost inputs for DAC technology to best illus-
trate the potential impacts of this technology if deployed at large 
scale (Fig. 2). Because DAC acts as a backstop to the exponential 
increase in CO2 price, the mere availability of DAC in the mitiga-
tion portfolio has a much stronger effect on the results than varia-
tion within the range of cost and energy inputs assessed here. In the 
low-overshoot case, DAC is deployed at gigaton scales as early as 
2035, in contrast to other IAM results, which typically delay such 
large DAC deployments past mid-century. This primarily follows 
the imposition of the emissions constraint, wherein we sought to 
model a scenario in which aggressive mitigation action is taken to 
limit peak temperature rise, rather than allowing the largest nega-
tive emissions requirements to be pushed far into the future to meet 
an end-of-century target by allowing a large overshoot46. Spatially, 
DAC is projected to be deployed primarily in regions such as the 
United States, South America, China and Australia, which have 
abundant geologic storage capacity, large natural gas reserves and 
the potential for inexpensive, relatively low-carbon electricity.

In all cases, much of the negative emissions requirement is 
driven by sectors that are recalcitrant to decarbonization (for 
example, transportation). DAC displaces the use of BECCS and 
afforestation for negative emissions, but it also reduces the need for 
emissions abatement in the model. Namely, gross-positive emis-
sions are higher in scenarios in which DAC is available, because 
those emissions can be offset using DAC while still meeting con-
straints on net emissions. The negative emissions pathway of using 
bioliquids to manufacture durable products and thereby storing  
carbon (that is, bioindustrial feedstocks) is not actively utilized when 
low-cost DAC is available, as the biomass and land area devoted to 
its growth can be more profitably used for other purposes such as 
transportation fuels or food crops. In the high-overshoot case, even 
relatively modest delays in near-term mitigation greatly increase the 
reliance on future negative emissions, which must be met by DAC 
due to constraints on land available for BECCS and afforestation. 
This highlights the importance of aggressive mitigation in the near 
term, as DAC, and indeed all NETs, have yet to be deployed at scale, 
and high overshoot may be irreversible if these technologies prove 
infeasible or incapable of keeping up with runaway climate change16.

Crop pricing under NET deployment
We consider three major grain staple crops: corn (maize), wheat 
and rice, and quantity-weight the results by mass to better reflect 
regional differences in food supply. Food prices peak at 15% above 
2010 levels in the no climate policy case due to population growth 
and a growing global middle class. This is likely an underestimate 
of food price increases that would occur in the absence of climate  
mitigation action, because GCAM does not currently consider  
climate damage such as reduced yields or crop failures due to 
extreme drought or flooding that are expected in a warmer 
world47–49. Incorporating such bidirectional feedbacks between the 
Earth and human socioeconomic systems into GCAM is an area of 
cutting-edge, ongoing research50. To meet a low-overshoot trajec-
tory without the large-scale availability of DAC, end-of-century 
food prices are projected to increase by sevenfold relative to 2010 
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levels. Food price impacts are regionally heterogeneous and are  
projected to be most heavily concentrated in sub-Saharan Africa. 
The availability of low-cost DAC attenuates the most severe effects 

of land-intensive negative emissions on food markets, but food 
prices still increase by approximately threefold globally relative to 
2010 levels and regional disparities remain, owing to still-large land 
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use for BECCS and afforestation. These severe food price increases 
are largely attributable to the imposed constraint on the ability of 
‘commercial land’ (for example, agricultural and forestry activities 
for food, fibre and bioenergy production) to expand into other-
wise ‘natural’ uses of land (Fig. 3). If this land protection constraint  
is relaxed, food price impacts would be less severe in both the  
DAC and no-DAC scenarios, but at the expense of even larger- 
scale conversion of natural lands to agricultural production and 
managed forest.

Water and energy use of NETs
Water consumption for DAC is comparable to that of bioenergy crop 
irrigation (Fig. 4). This result is in contrast to a previous report23 
where BECCS and afforestation sequestration was scaled by a water 
use factor20 that included the total evapotranspiration of unirrigated 
bioenergy crop cultivation, without subtracting the evapotranspira-
tion of the food crops as well as native vegetation that the bioenergy 
crops would be replacing. GCAM calculates water consumption, 
water withdrawals and crop evapotranspiration for agricultural 
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and industrial sectors endogenously. This treatment of water  
use produces a different result than would be obtained by linearly 
scaling the water intensity of each NET. DAC reduces the demand 
for negative emissions from BECCS, but also allows for increased 
positive emissions to the atmosphere, which are then offset by DAC. 
Therefore, even though DAC is still less water intensive than bio-
energy crop irrigation, large DAC deployments result in increased 
total water use for negative emissions—a phenomenon analogous 
to a rebound effect. Further, irrigated cropland that would be used 
for BECCS if DAC were not available is then freed up for other 
agricultural production, further increasing water demand. To meet  
the same low-overshoot emissions constraint, the availability of 
DAC results in a net increase in total water consumption of nearly 
35 km3 yr−1 in 2050, approximately 35% of current-day evaporative 
losses for electricity production globally. The increased late-century 
negative emissions requirement in the high-overshoot scenario, 
which is met by DAC, increases water consumption even further. 
Input assumptions and calculated intensity factors (tH2O/tCO2 
sequestered) are reported in the Supplementary Information.

Results for primary energy consumption by source for low and 
high overshoot of the 1.5 °C temperature target are reported in  
Fig. 5. As in the no-DAC scenario, fossil fuels continue to play a 
large role in the global energy system, but their emissions are 
mostly abated using CCS technology (that is, CO2 emissions are 
captured at point sources). Even with DAC, unabated coal shows 
precipitous drop-offs at the initiation of the climate policy, while 
unmitigated oil and gas continue to be used for transportation and 
industrial processes that are recalcitrant to decarbonization. In the 
low-overshoot case, process heat and electricity requirements for 
DAC together account for 100 EJ yr−1 of energy demand by 2100, 

with process heat requirements accounting for 85 EJ yr−1 of this. 
For context, global natural gas demand in 2018 was approximately 
130 EJ40. Even relatively modest delays in aggressive mitigation in 
the high-overshoot scenario result in increased energy demand 
from DAC to remove previously emitted CO2. Differences between 
low-overshoot scenarios in which DAC is and is not available are 
shown in Fig. 5c. Increases in demand for other fuels (for example, 
conventional natural gas and oil) occur because the availability of 
DAC allows other industries to abate their emissions less aggres-
sively and be offset by DAC. Additional demand for natural gas CCS 
is due to DAC process-heat requirements.

Conclusions
Modelling results obtained using GCAM suggest that DAC technol-
ogy can make substantial contributions before mid-century to the 
deep emissions reductions necessary to meet a 1.5 °C end-of-century 
temperature increase goal. Given the global ambition to aggres-
sively mitigate climate change in the near term, DAC could begin 
removing multiple GtCO2 yr−1 from the atmosphere as early as 
2035, even assuming present-day financial and energy inputs. The 
availability of DAC can reduce the steepest tradeoffs associated with 
land and fertilizer use for BECCS and afforestation. However, even 
with large-scale DAC availability, BECCS and afforestation deploy-
ment will still have large effects on other commodity markets, food 
in particular, with expected impacts concentrated heavily in the 
Global South. We also find that reductions in bioenergy crop irriga-
tion withdrawals and consumption are largely offset by increased 
water use for DAC. In the case of water consumption, evaporative 
losses from DAC are over 100% of the reduction in BECCS-related 
consumptive water use that DAC technology enables. This is due 
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to a ‘water rebound effect’ where the less water-intensive technol-
ogy (DAC) is used at higher rates because it displaces emissions 
abatement, increasing overall water use. Indeed, much of the nega-
tive emissions requirement in all scenarios is driven by offsets for 
recalcitrant sectors (for example, liquid fuels for transportation). 
Thus, research and policies aimed at avoiding emissions from these 
distributed sources in the first place could substantially reduce the 
projected tradeoffs associated with all NETs. This highlights the 
importance of detailed consideration of interaction effects between 
NETs and emissions abatement by policymakers and the models 
informing them, as well as environmental impacts (for example, 
water use) not directly related to climate. IAM research into NETs 
with potential co-benefits (for example, agricultural soil carbon and 

coastal wetlands protection and restoration) could further highlight 
ways to alleviate negative side effects associated with planting trees, 
growing bioenergy crops or building industrial facilities solely for 
the purpose of large-scale carbon removal. It is crucial, however, 
that modelling results projecting large-scale future deployments of 
‘more sustainable’ negative emissions are communicated so as to not 
justify further delays in implementing ambitious mitigation policy 
in the near term51.

Consistent with other IAM studies of DAC, we find that this tech-
nology will require large energy input, up to 115% of current-day 
natural gas consumption for process heat alone40. Any robust climate  
policy including DAC in the mitigation portfolio should there-
fore consider natural gas life cycle emissions (for example, leakage  
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during extraction and transport) to avoid offsetting the climate 
benefit of the CO2 removal52. The fundamental issue of increasing 
future energy requirements for CO2 removal to compensate for 
failure to decarbonize in the near term exists even with DAC pro-
cesses that can use renewable energy for process heat and electricity. 
The magnitude and distribution of food price increases projected 
to result from land-based carbon removal, even with large-scale 
deployments of DAC, raise profound intra- and inter-generational 
equity concerns. While these concerns have been well covered in the  
literature with respect to the risks and burdens of climate change itself 
(for example, refs. 53,54), additional attention is needed to address the 
distribution of burdens of negative emissions intended to mitigate it. 
Most critically, we emphasize the need for urgent action on decar-
bonization policy that is the precondition for any kind of large-scale 
mitigation activity, let alone global-scale net-negative emissions. Just 
as climate impacts (for example, sea-level rise and extreme weather 
events) will continue to become more severe with delayed action,  
the food, energy and water tradeoffs of DAC and other negative 
emissions technologies will only increase in magnitude the longer 
mitigation is delayed and the need for their deployment increases.
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Methods
We used GCAM version 5.2, accessed on 8 November 2019, and ran scenario 
permutations on the University of Virginia high-performance computing cluster, 
Rivanna. We imposed two constraints on global CO2 emissions pathways, which 
represent high- and low-overshoot trajectories of the 1.5 °C end-of-century 
temperature target from the IPCC Special Report on Global Warming of 1.5 °C. Both 
emissions constraints are assumed to begin in 2025. The first emissions pathway 
seeks to limit overshoot of the 1.5 °C temperature target, which is broadly consistent 
with the scenario design logic suggested by Rogelj et al.46. The peak mean global 
temperature reached in this scenario is 1.56 °C above pre-industrial levels in year 
2045, before subsequently declining to 1.32 °C by 2100. The second pathway allows 
near-term mitigation to proceed more slowly, with associated higher intermediary 
overshoot of the 1.5 °C temperature target, peaking at 1.78 °C in 2055, before 
returning to approximately the same temperature as the low-overshoot scenario by 
2100. This allows direct assessment of the impact of delays in near-term ambition 
on longer-term tradeoffs associated with negative emissions. We emphasize that 
an explicit consideration in our scenario design was to reduce end-of-century 
warming as well as reliance on future net-negative emissions, and that both 
emissions trajectories are at odds with current and intended future climate action56. 
Additional delays in mitigation will increase the requirement for negative emissions 
in the future5,6. The emissions constraints imposed, as well as the resulting CO2 
concentrations and global average temperature anomaly trajectories, are reported 
along with historical data for each of these in Extended Data Fig. 2 (refs. 7,57,58). 
GCAM endogenously calculates the CO2 prices required to meet the emissions 
constraint imposed in each model period. Land-use change emissions are included 
under the constraint, and their price is determined as an exogenously specified 
proportion of the fossil emissions price. This is done because, whereas fossil fuels 
are largely a market commodity, much of the land use and agriculture occurs outside 
of regulatory frameworks in many countries17. Pricing land-use change emissions 
immediately at 100% of the fossil carbon price therefore ignores existing institutional 
barriers to implementing land-use emissions policy, including uncertainties in 
quantifying fluxes and reversal risks of biospheric carbon storage59–61. To represent 
long-term improvements in institutions for implementing land-use policy, land-use 
change emissions are priced here as a linearly increasing proportion of fossil and 
industrial emissions price, from 0% in 2025 to 100% by 2100.

DAC requires energy input in the form of process heat and electricity 
and financial inputs for capital expenditure and non-energy operations and 
maintenance. While some DAC processes require negligible water use and 
may actually produce water from humid air, the process modelled here relies 
on aqueous reactions between atmospheric CO2 and a hydroxide solution and 
has evaporative water losses at the air contactor22,62–64. There is large parametric 
uncertainty with regard to the energy intensity and total cost of DAC, the latter 
of which depends heavily upon the assumed capital recovery factor, as well as the 
energy source65. We focus on DAC processes requiring high-temperature heat 
from natural gas combustion, rather than those using lower-quality waste heat 
or 100% renewable electricity, because detailed and harmonized specifications 
for these latter processes are not available in the literature due to commercial 
confidentiality. Energy and financial input parametrizations for high- and 
low-cost DAC follow those used by Realmonte et al.,23 representing upper and 
lower estimates for hydroxide-based DAC processes from recent literature22,23,66. 
Per tCO2 sequestered from the atmosphere, for low-cost DAC we assume process 
heat input of 5.3 GJ, electricity input of 1.3 GJ and non-energy financial input of 
US$180. Parametrization and results for high-cost DAC, for which we used less 
optimistic parametrizations for energy and financial inputs, are provided in the 
Supplementary Information. Electricity input for DAC is assumed to come from 
each region’s grid; generation fuel mix and therefore cost and carbon intensity is 
calculated endogenously22. Financial inputs are assumed to remain constant in 
real terms over time. For water, we assume 4.7 tH2O/tCO2 following the detailed 
material balances provided by Keith et al., with withdrawals and consumption 
assumed equal22. Process heat for DAC is assumed to come from natural gas with 
a 95% capture rate for combustion CO2 emissions, consistent with oxyfuel CCS 
processes23. For other CCS processes, the standard GCAM assumptions for CO2 
capture rates are used (85–95%)67. The storage cost for carbon captured from  
DAC and other sources is calculated separately and endogenously by GCAM.

In equilibrium, DAC indirectly competes with other NETs for its share 
of contribution to the emissions reduction. For instance, given a constraint 
on emissions, GCAM will endogenously calculate the lowest cost option 
to achieve the goal by comparing the cost-effectiveness of BECCS (in both 
bioliquids and bioelectricity) and afforestation. Bioenergy crops can be used to 
achieve net-negative emissions by displacing the use of fossil fuels with CCS in 
electricity generation (bioelectricity), converted to liquid transportation fuels and 
sequestering the resulting high-purity CO2 streams (biofuels), or used as feedstocks 
in durable products manufacture such as plastics (bioindustrial feedstocks). 
BECCS therefore largely competes on the energy supply side, but also competes 
for carbon-negative subsidies. Afforestation largely competes with other land-use 
demands, such as food crops and pasture, but also competes for carbon-negative 
subsidies. We placed no external constraints on the use of DAC and removed 
the default constraint on the amount of bioenergy used for negative emissions. 

BECCS was instead allowed to freely compete with other uses of land based on 
their costs, yield and water demand. However, we kept in place the standard 
GCAM assumption that 90% of natural lands (non-commercial) are removed 
from economic competition (that is, not available for expansion for bioenergy, 
food and fibre production, or afforestation). This is done to place reasonable 
biophysical constraints on the deployment of land-based mitigation and negative 
emissions, and to preserve much of the remaining natural land for biodiversity, 
species, watershed protection, recreation and cultural value as reflected in the UN 
Sustainable Development Goals and many national-level policies. Descriptions of 
other GCAM model specifications can be found in the GCAM documentation68.

Data availability
To enable replication of our work, the input files required to run our scenarios, as 
well as python scripts used in generating figures for this study, may be downloaded 
at https://doi.org/10.18130/V3/JKJAOG55. Source data are provided with this paper.

Code availability
The full model is available for download at https://github.com/JGCRI/gcam-core.
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Extended Data Fig. 1 | Projected NET deployments to limit global warming to 1.5 °C. Modelling results underpinning the IPCC’s Special Report on Global 
Warming of 1.5 °C. The thicker coloured lines show the median projected deployments of the individual afforestation, BECCS, and DAC technologies, for 
those model results which report them. The thin grey lines represent the combined negative emissions deployment for individual scenarios. The grey 
shading represents the 68% confidence interval (+/− 1 standard deviation) on combined negative emissions deployment.
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Extended Data Fig. 2 | Effect of representative high and low overshoot of the 1.5 °C end-of-century temperature target. a, Temperature anomalies from 
pre-industrial, b, CO2 concentrations, and c, emissions trajectories. Historical data for emissions, CO2 concentrations, and temperature are indicated by 
grey lines. The “no climate policy scenario” is the GCAM reference scenario. After the year 2020, CO2 emissions pathways represent imposed model 
constraints which result in the CO2 concentration and temperature trajectories reported.
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