
6 Va. J.L. & Tech. 14 (2001), at http://www.vjolt.net
© 2001 Virginia Journal of Law and Technology Association

VIRGINIA JOURNAL of LAW and TECHNOLOGY

UNIVERSITY OF VIRGINIA FALL 2001 6 VA. J.L. & TECH. 14

Yet Another Suggestion For Solving the Computer Program Dilemma

Kristina Soderquist*

I. Introduction
II. 35 U.S.C. § 101 and Computer Programs
III. Why Patent Protection for Computer Programs is Problematic
IV. Why Current Copyright Protection for Computer Programs is Problematic
V. A Solution
VI. Response to Critics
VII. Conclusion

Abstract

Protection of computer programs as intellectual property has engendered much debate. The current state of the law
considers computer programs articles which are copyrightable and, therefore, protected by copyright law.
However, patent law has encroached upon copyright law by allowing a computer program, when running on a
computer, to be patentable. I find these results to be conflicting and incorrect. In particular, computer programs
should be protected under copyright law as dictated by Congress. This does not mean that the current state of
copyright law protection is adequate for computer programs. In fact, there are at least two primary criticisms of the
copyright scheme: 1) the copyright term of a fifty-year minimum is too long for computer programs, potentially
causing a “lock-up” of the market; and 2) the protection from infringement of computer programs that the current
copyright structure grants is woefully insufficient, causing people not to make their programs public for fear of
being copied. To overcome these conflicts and criticisms, I propose a sui generis approach to intellectual property
protection of computer programs. My proposal is four-fold: 1) clearly bring computer programs under the
umbrella of copyright law and end the current “machine” claims for computer programs permissible in
patent law; 2) grant the Federal Circuit jurisdiction to hear all appeals dealing with computer program
copyright infringement issues; 3) use the doctrine of equivalents as a determination for non-literal copyright
infringement of an individual’s computer program; and 4) shorten the term length of copyright protection to
between five and ten years. Such an approach obviously requires a great deal of surface modification in the
treatment of computer programs; however, in reality, not much will have changed from the current status of
permitting the patentability of computer programs when claimed as a process.

I. Introduction[1]

1. The explosion in computer technology, in particular computer programming, has tested the limits of present
protection for intellectual property. Currently, computer programs under Title 17 of the United States Code are
protected by copyright law. However, infringement claims brought under copyright law do not provide
sufficient protection for computer programs. As a result, creators of computer programs have attempted to gain
patent protection for their product, with the result being that as long as the program is claimed as a “machine,”
it is patentable. We are left with a system that affords both copyright and patent protection to computer
programs–a result that not only extends beyond Congress’ original intent behind the copyright and patent laws,
but also is woefully inadequate.

2. In this paper, I propose a different approach to the treatment of computer programs as intellectual property
which attempts to modify the current structure such that computer programs receive proper protection while not
locking up the market for others. The proposal consists of four parts: 1) clearly bring computer programs
under the umbrella of copyright law, ending the “machine” claims for computer programs currently
permissible in patent law; 2) grant the Federal Circuit jurisdiction to hear all appeals dealing with
computer program copyright infringement issues; 3) use the doctrine of equivalents as a determination
for non-literal copyright infringement of an individual’s computer program; and 4) shorten the term
length of copyright protection to between five and ten years.

3. At first glance, this proposal may seem daunting and, perhaps, unrealistic. However, I believe that the
analysis below will demonstrate that this proposal in practice does not differ much from what is actually
done today and also accomplishes the goal of providing sufficient intellectual property protection for
computer programs.

4. Part II of this paper introduces the current state of patent law and computer programs. It begins with a
discussion of the traditional barriers to the patentability of computer programs, namely the mathematical
algorithm and 35 U.S.C. § 101, and then explains how recent court decisions have circumvented these
traditional barriers through a close examination of State Street Bank & Trust Co. v. Signature Fin. Group,
Inc. and AT&T v. Excel Communications Mktg., Inc. Following this is an explanation of why patent law,
as a whole, is problematic when it comes to protecting computer programs. Part III focuses on why
present copyright law is insufficient for protecting computer programs. Part IV sets forth my proposal,
including justifications for each of the four parts and implementation issues. Part V addresses potential
criticisms of the proposal. Finally, the conclusion revisits the tension involved in providing protection of
computer programs, a category of works which was never anticipated during the creation of our
intellectual property laws.

II. 35 U.S.C. § 101 and Computer Programs

5. The first obstacle an applicant for a patent must overcome is 35 U.S.C. § 101. This section sets forth

what is patentable under the law. More specifically, § 101 states that “[w]hoever invents or discovers
any new and useful process, machine, manufacture, or composition of matter, or any new and useful
improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this
title.” This means that an applicant’s “invention” must be both useful and fit into one of the enumerated
categories; it must be either a process, a machine, a manufacture, or a composition of matter before the
invention will be considered to meet the other requirements of patentability.[2]

6. Prior to the latter part of the twentieth century, there had been relatively little confusion over whether or
not something was patentable based on the nature of the “invention.”[3] The recent advent of computer
programs and software has greatly changed this. The difficulty stemmed from the categorization of a
computer program—whether or not a program was a useful process or machine. This was further
complicated by the 1980 modification of the copyright statutes. Sections 101 and 117 of Title 17 of the
United States Code were amended to include the definition of a computer program and limitations on the
exclusive rights of computer programs, respectively,[4] thereby bringing computer programs into the
realm of copyright protection.[5]

7. Copyright and patent protection are meant to be independent of one another. Consequently, the
challenge for computer software patent applicants became how to claim their inventions so that such
inventions no longer fell under the copyright umbrella but rather under patent law. Applicants began to
draw on decisions of the courts upholding the patentability of “processes for converting information,” in
particular, the Federal Circuit’s 1994 en banc decision in In re Alappat.[6] Here the court held:

[a]lthough many, or arguably even all, of the … elements recited in [the] claim
represent circuitry elements that perform mathematical calculations, which is
essentially true of all digital electrical circuits, the claimed invention as a whole
is directed to a combination of interrelated elements which combine to form a
machine for converting [data from a discrete form to a smooth wave form]. This
is not a disembodied mathematical concept which may be characterized as an
“abstract idea,” but rather a specific machine to produce a useful, concrete, and
tangible result.[7]

8. While this case focused primarily on digital circuitry and not on a computer program per se,[8] it became
the building block upon which applicants based their arguments. For example, applicants began to
rephrase the preamble to their claims to include phrases such as “a system for producing” some type of
result, a “process for producing” a particular result, or even simply some type of machine for doing
something, with most of the claim elements in means-plus-function form. Even when using such
language, it was evident that the heart of the applicant’s invention really was the computer program and
what it was doing. The courts, however, determined that such claim language would protect the
“invention” under Title 35, saving it from being relegated to copyright protection–something that was,
and perhaps still is, generally regarded as a poor or unsatisfactory result.[9]

9. Use of such construction gained further popularity following State Street Bank & Trust Co. v. Signature
Fin. Group, Inc.[10] and AT&T Corp. v. Excel Communications Mktg., Inc.[11] These decisions by the
Federal Circuit and how they have contributed to the way patent applications containing software are
handled today will be examined in detail below.

A. State Street Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368 (Fed. Cir. 1998)

10. The Federal Circuit’s treatment in State Street Bank & Trust Co. v. Signature, Fin. Group, Inc., led the
way toward making software patentable. It was the first case in which the court explicitly addressed
computer software and found it to be a patentable “invention.” The “invention” being challenged was
the subject of U.S. Patent No. 5,193,056 and was:

generally directed to a data processing system . . . for implementing an
investment structure which was developed for use in . . . business as an
administrator and accounting agent for mutual funds. In essence, the system,
identified by the proprietary name Hub and Spoke â, facilitates a structure
whereby mutual funds (Spokes) pool their assets in an investment portfolio
(Hub) organized as a partnership. [Such a structure] provides the administrator
of a mutual fund with the advantageous combination of economies of scale in
administering investments coupled with the tax advantages of a partnership.[12]

11. Further, the preamble included “[a] data processing system for managing a financial services
configuration of a portfolio”[13] Additionally, the specification identified the components of the
system to be a personal computer including a CPU; a data disk; an arithmetic logic circuit configured to
prepare the data disk to magnetically store selected data; three arithmetic logic circuits, each configured
to retrieve information from a specific file, calculate incremental increases or decreases based on specific
input, allocate the results on a percentage basis, and store the output in a separate file; and a final
arithmetic logic circuit configured to retrieve information from specific files, calculate that information
on an aggregate basis and store the output in a separate file.[14] A cursory review of the court’s claim
construction illustrates that the essence of what is claimed is a computer program designed to gather
information, manipulate the information mathematically, and redistribute the information. Even
comparing this function and outcome to Alappat,[15] it seems as though there is no “useful, concrete and
tangible result,”[16] as it appears the State Street process is simply a series of calculations. This is what
opponents of patentability argued.

12. In its analysis, the court identified two potential obstacles to patentability— § 101 and the mathematical
algorithm exception.[17] The Federal Circuit first examined the claim for compliance with § 101,[18]
holding that when properly construed, the claim was drawn to a machine:

a data processing system for managing a financial services configuration of a
portfolio established as a partnership, which machine is made up of, at the very
least, the specific structures disclosed in the written description and
corresponding means-plus-function elements…recited in the claim. A ‘machine’
is proper statutory subject matter under § 101.[19]

13. The court included the computer program’s “functionality,” or what it actually “does,” as a part of the
invention, and thus determined that the whole “system” was a process.[20]

14. The State Street court also analyzed and dismissed the mathematical algorithm exception to patentability.
[21] This exception has been recognized by the Supreme Court, with the Court holding that
mathematical algorithms are not patentable subject matter when standing alone, as they are merely
abstract ideas.[22] However, when the mathematical algorithm is reduced to some type of practical
application,[23] patentability is permissible. The State Street court followed the Supreme Court’s lead,
holding that:

the transformation of data, representing discrete dollar amounts, by a machine
through a series of mathematical calculations into a final share price, constitutes
a practical application of a mathematical algorithm, formula, or calculation,
because it produces ‘a useful, concrete and tangible result’ a final share price
momentarily fixed for recording and reporting purposes and even accepted and
relied upon by regulatory authorities[24]

15. Thus, the court held that the invention was patentable, putting to rest the allegation that the system fell
into the mathematical algorithm exception.[25]

16. While the mathematical algorithm exception may not seem immediately relevant to computer programs,
it is. For a computer program is a series of algorithms, most of which perform some type of
mathematical computation–as seen, for example, in the program at issue in State Street. Having found a
way around both the mathematical algorithm exception and § 101 in State Street, the Federal Circuit
illustrated how computer programs could be elements of a patentable invention, namely by phrasing the
claims in means-plus-function and emphasizing the usefulness of the invention.[26] The State Street
court did not go into an exhaustive discussion of its analysis, which may explain part of the confusion
engendered by this decision. The attempt to find alternative ways to patent computer programs
continued, culminating most recently in AT&T v. Excel Communications Mktg., Inc., as discussed
immediately below.[27]

B. AT&T Corp. v. Excel Communications Mktg., Inc., 172 F.3d 1352 (Fed. Cir. 1999)

17. In AT&T v. Excel Communications Mktg., Inc., the court reached a complete dismissal of traditional
notions of the non-patentability of computer software, with the Federal Circuit explicitly holding that “it
is now clear that computer-based programming constitutes patentable subject matter so long as the basic
requirements of § 101 are met.”[28] The invention at issue was the modification of a standard electronic
message record generated when a person makes a long distance phone call, involving the addition of
another data field to the message record.[29] The resulting independent claim simply described a
process which used a computer program to apply Boolean algebra to data. The program determined a
final value which was then transformed into a signal representing information regarding the telephone
user’s long distance carrier. The court considered this outcome to be a useful, non-abstract result, thus
finding the claimed process “comfortably falls within the scope of § 101.”[30] Using State Street as its
starting point, the AT&T court reiterated the premise that as long as a mathematical algorithm is a part of
an invention which, as a whole, is applied in a “useful” manner, the use of the mathematical algorithm
will not render the invention outside the scope of § 101.[31]

18. In its discussion, the AT&T court specifically addressed the challenge today’s computer technology
presents—namely that because computer technology is largely based on the manipulation of numbers, it
has led to problems with traditional applications of the rules governing patentability. In its statement of
finding, the AT&T court, following the lead of the Supreme Court, justified the position that computer
programs are entitled to patent protection. Yet, looking at the bigger picture leaves one confused, as the
AT&T court seems to say that patent protection is available for computer programs, a subject which
Congress has already allocated to copyright law in Title 17.[32]

III. Why Patent Protection for Software Is Problematic

19. While many argue that the combination of Federal Circuit cases does not translate to the conclusion that

“computer software is patentable,” I disagree. Such a position simply relies on form over substance.
Under current law, it is not the computer program, itself, but claiming the steps that are performed by a
program that satisfies the requirements of patentability.[33] In essence, the “invention” is the action of a
computer running the program.[34] What does a computer program actually do? It simply instructs the
computer to perform various electrical operations which are then translated into recognizable symbols.
[35] This seems to fly in the face of the basic idea that a patent cannot be obtained for an abstract idea,
as the purpose of § 101 has all along been to limit patent protection to something tangible. That a final
result or number which can be useful to someone, somewhere, at some point in time just “pops out”
should not be sufficient to overcome this bar for patent protection.

20. Another argument against the patentability of computer programs involves the construction of software
itself.[36] A computer program is simply a string of commands, ranging in length from a single line for
the most basic programs, to a million or more lines in the more complex programs. In fact, a computer
program contains only “human-readable symbols (source code) that can be entered through a
keyboard,”[37] i.e., text. Even those uneducated in the law would say that text is what copyright law
protects.

21. Fortunately, we do not need to rely on what a layperson thinks, as § 101 of the copyright law defines a
computer program as “a set of statements or instructions to be used directly or indirectly in a computer in
order to bring about a certain result.”[38] Further, by declaring that computer programs are to be
protected by copyright law, “Congress has made clear that computer programs are literary works entitled
to copyright protection.”[39] Because of this, it seems evident that we have no choice—computer
programs are to be protected under copyright law and copyright law only.

IV. Why Current Copyright Protection for Computer Programs is Problematic

22. Copyright law is intended to protect “any creative work that is ‘fixed in any tangible medium of

expression’ . . . and now computer memory and computer disk storage are considered mediums of
expression.”[40] Copyright law, however, also has at its heart two competing policy goals: “1) ensuring
that authors have an adequate economic incentive to produce [protectable] works; and 2) preserving the
public domain by ensuring that the author’s monopoly is not so broad that it prevents others from
developing competing works.”[41] These two goals are not achieved with the current copyright
protection for computer software.

23. In terms of providing economic incentive to authors, the Copyright Act provides a limited[42] monopoly
to the author/creator for works created after 1978 for a general term extending from creation until the end
of the author’s/creator’s life plus an additional fifty years.[43] The purpose of term limits serves two
primary functions: 1) it provides the author/creator with the potential for economic benefit for an
extended period of time (as no one can use his creations without his permission); and 2) it guarantees
that the work will eventually become part of the public domain.[44] For many works such a lengthy term
provides an adequate amount of protection. For computer programs, however, such a term is a disaster.
Computer software continuously expands upon itself. Once an author has figured out how to solve a
problem, others will desire to use the solution and further build upon the structure to suit their specific
needs. The current regime, however, would keep the program from the public for at least fifty years,
discouraging other potential users from working with the program to modify and/or improve it. Because
progress in computer programming is very dependent on those who have gone before, the minimum fifty-
year term is likely to chill progress in the computer programming field/industry, thereby encouraging
programmers not to develop further modifications to existing code for fear of copyright infringement.[45]

24. Similarly, the second goal of copyright protection—preserving the public domain by ensuring that the
author’s monopoly is not so broad that it prevents others from developing competing works—can be
frustrated easily when it comes to computer programs. For example, at one extreme copyright law would
seem to protect the very first person who created or copyrighted a simple “do loop” or “if-then”
statement to the exclusion of programmers who may wish to use the function in a program totally
unrelated to the “creator’s.” Thus, the current term period turns a “limited monopoly” for computer
programs into effectually a perpetual monopoly.

25. Protection of this “monopoly,” when it comes to computer programs, is another area in which copyright
law is lacking. Depending upon which side you are on—creator or alleged infringer—current protection
can be viewed as too little or too great, respectively. The controversy surrounding copyright
infringement of computer programs involves its complex and inconsistent application. A brief
introduction to copyright infringement will show that its treatment of computer programs further
counters copyright law’s intended goals.

26. A cause of action for copyright infringement exists to deter a person from copying another’s creation
without permission and also to collect damages for any economic benefit the copying-person has taken
from the actual creator. Copyright issues, such as infringement, fall within the jurisdiction of federal
courts of general jurisdiction.[46] Because one circuit court is not bound by another, the actual language
denoting copyright infringement may vary from circuit to circuit. However, the general requirements are
the same: the plaintiff must prove: 1) ownership of a valid copyright and 2) that the defendant copied the
protected work.[47] Additionally, courts generally agree this can be shown by either direct evidence or
indirectly through the utilization of a “substantially similar” test.[48] The general test applied by the
circuits requires that the plaintiff show that: 1) the defendant had access to the plaintiffs copyrighted
work; and 2) the defendant’s work is “substantially similar” to the plaintiff’s copyrighted work.[49]

27. While access to a computer program is fairly easy once it has been marketed or otherwise released to the
public, meeting the “substantially similar” threshold is likely to be much more difficult. For example, if
a programmer simply adds an additional function to the program which totally changes the result, would
this be considered infringement, or would the programmer be able to copy and modify as such with
impunity? Obviously, the latter situation is not desirable, but how can an infringing work be identified?
If the two programs look different, even if it is the first program’s breakthrough which enabled creation
of the second program, the doctrine of substantial similarity would seem not to be applicable: the
programs are different and protection does not clearly extend beyond the code itself. Similarly, circuits
might disagree on what meets the “substantially similar” requirement. Would a programmer be able to
use a program in the First Circuit, but not in the Ninth Circuit, because the Ninth Circuit interprets
“substantially similar” differently?

28. Answers to these questions do not come easily. The task of determining whether a computer program is
“substantially similar” to another is a cumbersome one. Because of regional jurisdiction, the test for
“substantially similar” varies from circuit to circuit, resulting in different and inconsistent application.
[50] The best manner in which to describe the general way of approaching the test might be to call it a
filtering process, separating what is deemed the "protectable” core of the program from the “non-
protectable” elements.[51] Once this is accomplished, the core is compared to the allegedly infringing
work to determine if the two are “substantially similar.”[52] Ultimately, this involves a judgment call to
determine the importance of the elements of the original program which were copied.[53] In some
instances, the amount copied may be so small as to be considered de minimus; however, it is also
possible for a small amount of copying to be sufficient to consider the works “substantially similar.”[54]

29. The resulting confusion is inevitable. Not only does the process for determining substantial similarity
seem difficult, but its application does also. How does a creator, or a potential infringer, know what
constitutes infringement in the various circuits? The current regime could conceivably result in a certain
activity being considered infringing in one circuit and not in another. Such a result is not only
impractical, it borders on the absurd. With today’s Internet society, when a program can be sent to any or
all of the fifty states simultaneously, how can an individual with a protected expression in one
jurisdiction monitor, or even realize, when his intellectual property is being misappropriated in another?

30. The current legal protection of computer programs under law begs revision. However, because of
Congress’ mandate to include computer programs under the copyright umbrella, we are unable to “move”
them. Therefore, I propose a way to modify present copyright law so that the interests of authors,
creators, and the general public are conserved.

V. A Solution

31. My proposal rests on the premise that computer programs should not be patented; rather, such materials
should be protected by copyright law. The immediate justification for such a position is found in Title
17 of the United States Code which states that computer programs are to be included in the material
which is protected under the copyright laws.[55] Congress could not have been more explicit.
Subsequently, however, the courts have determined that computer programs are not only copyrightable
but also possibly patentable. What has emerged is a convoluted system where computer “code” must be
submitted to the Copyright Office for protection, while the actual use of the code is submitted to the
Patent Office in hopes of achieving a patent for something which is essentially the code being run on a
computer. Why inventors have sought to have their programs protected under patent law makes perfect
sense. The coverage is more extensive, including the doctrine of equivalents which characterizes as
infringing other items which may not literally infringe but are, in essence, the creator’s invention.[56]
Just because one form of protection is “better” for the creator, does not suggest we can totally abandon
what Congress has set forth.

32. Many people will admit that the current system of software protection as a whole, whether in the patent
or copyright context, is flawed; there are those who say it does not protect enough and those who say it
protects too much. My proposal is an attempt to work within the current framework of the law,
modifying and combining the positive aspects of patent protection and the requirement that computer
software be controlled by copyright law, all the while keeping the main policy goals of copyright law
from being frustrated.[57]

A. Bring Computer Programs Clearly Under Copyright Protection[58]

33. The first, and arguably most contentious, step of my proposal is to remove patent coverage from
anything that involves the use of code as part of its novelty and subjecting it to copyright protection.
Throughout the previous sections I have tried to delineate why it is that computer programs should not be
patentable.[59] While others may find different aspects of patent protection for computer programs
troubling, I am concerned primarily with two elements: 1) the traditional understanding that only things
which are tangible can be patentable; and 2) the fact that a computer program is merely a string of
characters arranged in a particular fashion to create certain electrical pulses. When a typical person
thinks of a “patented” item, he generally conjures up an image of something tangible. Even the doctrine
that all man-made things are patentable[60] does not allow for the protection of intangible things, such as
abstract ideas and mathematical algorithms.[61] Analogously, it has long been evident that text is a
means of expression which is protected by copyright. It is difficult to conceive of how typing a string of
characters into a keyboard can somehow transform those characters into something patentable. Under
such an analysis, it would appear that taking musical notes from scores and asking a pianist to perform
them would somehow make those musical notes patentable.[62]

34. Regardless of these or other reasons for removing computer programs from patent protection, Congress
has clearly directed that they be treated as copyrightable material. The logical course of action,
therefore, would be to concede that computer programs are to be protected by copyright law and to
develop a scheme which adequately protects them from copyright infringement.

B. Give Jurisdiction of Computer Program Copyright Issues to the Federal Circuit

35. Perhaps the most ambitious implementation of my proposal involves the shifting of jurisdiction of
computer program infringement cases to the Federal Circuit. My justification for the move is analogous
to that used to create the Federal Circuit. Like patent issues before 1982, copyright issues are
determined by the circuits. This configuration results in various interpretations of copyright laws and
related issues, with each circuit having the potential to differ from every other.[63] Bringing computer
program infringement issues under the jurisdiction of the Federal Circuit can resolve these conflicting
applications of copyright laws and develop a single, nationally uniform body of copyright law to deal
with computer program infringement.

36. One response is: why just computer programs, why are they special? As virtually everyone would
concede, the computer program industry has revolutionized the way personal and business lives in this
country are conducted.[64] Because computer programs have become such a vital part of everyday life,
it makes sense to have a single body decide computer program infringement issues for the entire country.
[65] I believe the Federal Circuit should be that body, and the approach to copyright issues dealing with
computer programs should follow that of patents.

1. The Patent Model

37. With respect to patents, United States Code Title 28 § 1295(a) states that the Federal Circuit has
exclusive jurisdiction[66] of a) an appeal from a final decision of a federal district court if the
jurisdiction of that court was based, in whole or in part, on 28 U.S.C. § 1338,[67] or b) an appeal from a
decision of 1) the Board of Patent Appeals and Interferences of the USPTO, with respect to patent
applications and interferences, 2) district court review of a decision by the Commissioner of the USPTO
or the Trademark Trial and Appeal Board regarding application for registrations of marks or, 3) a district
court to which a case decided at the Patent Board was directed pursuant to 35 USC §§ 145-146, instead
of being appealed directly from the Patent Board to the Federal Circuit.

38. Whether a case falls within the purview of 28 U.S.C. § 1338(a) has caused a great deal of debate. In
particular, the "arising under" language of § 1338(a) has presented much confusion. In 1988, however,
the Supreme Court settled this issue. In Christianson v. Colt Indus. Operating Corp., the Court
determined that jurisdiction “arising under” the patent laws included only cases in which a well pleaded
complaint established that the cause of action arose under the patent laws of the United States or that a
right to relief depended on the resolution of a substantial question of federal patent law; i.e., patent law is
one of the elements of the well-pleaded complaint.[68] Subsequently, in Aerojet-General v. Machine
Tool Works, Oerlikon-Buehrle, Ltd., the Federal Circuit ruled that “arising under” jurisdiction can simply
take the form of a non-frivolous compulsory patent counterclaim, such as invalidity.[69] That is, if on
appeal the cause of action, right to relief, or compulsory counterclaim deals with a substantial question of
federal patent law, the Federal Circuit has jurisdiction to hear the appeal.

2. Creation of an Analogous Computer Program Copyright Framework

39. The creation of a framework for computer program copyright issues analogous to that for patent issues is
not as daunting a task as it may seem. Obviously, modifications to Title 17 of the United States Code
would need to be made. However, the applicable language from Title 28 could be used virtually
verbatim. Two changes in particular would seem to be required: 1) inclusion of a section similar to §
1295(a) (indeed, in the instance of § 1295(a), the identical language could be used); and 2) inclusion of a
section similar to § 1338, with the appropriate patent language changed to computer program copyright
infringement issues. Bringing such modification of the laws into judicial practice could be handled
relatively easily: when the Federal Circuit decides its first case dealing with computer program issues, it
could simply adopt the language of Christianson and Aerojet-General, but applying it to computer
program copyright infringement issues.

40. Inclusion of computer program copyright issues in the jurisdiction of the Federal Circuit may appear to
add to the load of the already over-worked judges. However, a closer look shows that this is not quite
the case.[70] The infringement test I set forth in my proposal–the doctrine of equivalents–is one with
which the Federal Circuit already has experience. Consequently, the court will largely be doing what it
often does in its normal course of patent infringement analysis–determining whether the accused device
non-literally infringes the patented device under the doctrine of equivalents.[71]

41. In effect, what I propose involves more a change in “form” than “substance.” Bringing computer
program copyright infringement issues under the jurisdiction of the Federal Circuit will keep computer
programs under the copyright umbrella while ensuring that the court most experienced with such
issues[72] will hear appellate level cases. This would unify computer program copyright infringement
jurisprudence, thereby resolving the present conflicts among the circuits.

C. Utilization of the Doctrine of Equivalents for Determining Non-Literal Copyright Infringement of
Computer Software

42. My proposal now turns to perhaps the greatest criticism of using copyright law to protect computer software:
the protection afforded for infringement is insufficient. A creator/author fears that once he puts his work in the
public domain, it will be easy for others, including competitors, to simply change the program ever so slightly
and be able to utilize his creation without fear of reprisal. I do not find this surprising. Copyright infringement
can either be direct or indirect by using the “substantially similar” test. As discussed in greater detail above,
such a scheme of protection is not well-suited for computer programs. To overcome this inadequate
infringement protection, I propose the copyright infringement test for computer programs be changed so as to
follow a single, uniform analysis under the doctrine of equivalents.[73] Admittedly, this is a doctrine which
has been created and developed in the patent context; however, I think ample support exists for the prospect of
using the doctrine in deciding issues of copyright infringement of computer programs. Before further
discussion, a primer on the doctrine of equivalents is necessary.

1. The Doctrine of Equivalents

43. The doctrine of equivalents goes beyond interpretation of the claim language and seeks to determine if
the alleged infringing device is “equivalent” to what is claimed by the patent.[74] The doctrine of
equivalents is an equitable doctrine created in order to protect an inventor from an infringer[75] who
seeks to steal the benefit of the invention.[76] It involves looking at the patent, prior art, and the alleged
infringing device and making a determination of equivalence between the two devices. While this may
seem to frustrate one of the core tenets of patent law, namely that “the claims are the measure of the
grant,”[77] the doctrine of equivalents is used with the sole intention of serving the best interests of
justice.[78] The doctrine is a form of non-literal infringement. That is, it protects the patent holder from
someone who merely leaves out a step or aspect of the claimed invention in order to avoid directly
infringing the patent.

44. If a court finds that the alleged infringing device does not contain all of the elements of the claimed
invention, such that literal infringement is not applicable, the court then looks to see if the alleged
infringing device is equivalent to the claimed invention. The traditional test to determine equivalence is
the “function-way-result” test.[79] This test looks to the infringing device and asks whether it functions
in substantially the same way to achieve substantially the same result as the patented invention. If so,
the alleged infringing device is said to be “equivalent” to that claim and, therefore, infringes under the
doctrine of equivalents.[80]

45. Such a test may seem relatively straightforward; however, it has engendered much litigation. For
example, is it necessary to find an equivalent in the allegedly infringing device for each element of the
claim, or is an equivalence between the patented device and the alleged infringing device when looking
at the inventions as a whole sufficient?[81] The Federal Circuit ultimately came to the conclusion that:

the application of the doctrine of equivalents rests on the substantiality of the
differences between the claimed and accused products or processes, assessed
according to an objective standard. Thus, a finding of infringement under the
doctrine requires proof of insubstantial differences between the claimed and
accused products or processes. Often the function-way-result test will suffice to
show the extent of the differences.[82]

46. Thus, a determination of the substantiality of the differences between the two devices as a whole is also
relevant to the determination of equivalence.[83] As the majority view of the doctrine of equivalents
stands now, each element or its substantial equivalent must be found in the alleged infringing device for
a finding of non-literal infringement.[84]

47. Because of the technology boom, within the last few years the Federal Circuit has addressed specific
concerns regarding the scope of the doctrine of equivalents. For example, the court has found that
simply because an accused process is more efficient than the claimed process does not mean that the
differences are substantial.[85] Such a finding has a direct bearing on computer programs. With the
current patent scheme, should a second programmer come along and write a program which performs
similar to, but faster than, the patented computer program process, it will not automatically be assumed
that the second programmer has not infringed the patented process.

2. The Doctrine of Equivalents Applied to Computer Programs

48. The relevance of such a scheme to my proposal is fairly obvious: under the doctrine of equivalents, a
programmer’s protection is easier to ascertain than under the current “substantial differences” test. As
detailed above, the current requirement for non-literal copyright infringement is that there must only be
substantial differences in the written work. To the layperson, such a test may seem rather
straightforward. However, as explained previously, the current state of the law for determining
“substantial similarity” in computer programs is both confusing and inconsistent, with the circuits
choosing how to modify the general test such that it includes some form of abstraction and filtration.[86]

49. Alternatively, the doctrine of equivalents offers a more direct approach: if the second program performs
substantially the same function substantially the same way to achieve substantially the same result, it will
be found to be infringing. Thus, a simple textual change in the program is unlikely to be sufficient to
avoid infringement, while a rather complex “looking” textual change can also be considered infringing if
it performs substantially the same function in substantially the same way as without the change.
However, in the event a minor change alters the function of the program while still “looking” similar, the
new program can gain protection, prohibiting the first program from locking up the market. This result
furthers a significant goal of copyright law: the programmer will have the incentive to produce and
create, knowing he will not be locked out of the market and will also have sufficient protection from
“copycats.” At the other end of the spectrum, programmers will have a much better idea as to what
would constitute an infringing program.

50. Someone is likely to say that the doctrine of equivalents totally changes the nature of “copyright.” That
is, it involves the work having an identifiable function which is performed a certain way to achieve a
certain result. To even the casual observer, this is a valid criticism. For this reason, I limit my proposal
to computer programs. As discussed above, computer programs surely have tested the application and
limitation of the current legal structure. There is a recognizable tension between, on one hand, the fact
that the computer program itself exists only in the written text and, on the other hand, that the program
has a functionality when applied to run on a computer. From the beginning, this “duality” of a computer
program has been a point of conflict when it comes to finding the proper “place” for computer programs.
It has been said that the “primary source of value in a program is its behavior, not its text.”[87] While I
may disagree with such a strong statement, I recognize its position and implication. In reality, the
behavior of the computer program is what is largely coveted; however, the behavior is more of a by-
product of the source code–the computer program itself–than a creation. This tension is what has largely
fueled the debate to have computer programs included in patentable subject matter, despite Congress’
mandate that computer programs fall under the realm of copyright protection. Because of such a ripe
conflict, use of the doctrine of equivalents for infringement purposes would seem to satisfy both sides:
while computer programs are technically protected by copyright law, an aspect of their functionality is
contemplated when determining alleged infringement.

51. As already discussed, such a combination greatly diminishes the chance of a computer programmer not
receiving adequate protection for his creation. This scheme, in combination with my suggestion for a
reduced term limit for copyright protection of computer programs, will further the twin goals of
copyright protection without acting contrary to Congress’ express intent.

D. Copyright Protection for Computer Software Should Have a Term of Between Five and Ten Years

52. Finally, I propose to shorten the term of copyright protection for computer programs. A significant
criticism of copyright coverage of software is the lengthy term. In the event a programmer successfully
obtains a copyright, no one can use his creation without his permission for at least fifty years. In the
computer industry, this is unacceptable because the industry advances so rapidly that such a term could
conceivably halt progress in certain areas. For example, it is well recognized that computer technology
largely relies on past advances to move forward. This would require using present methods to move into
the future. How can a programmer move forward if he cannot use a groundbreaking program developed
by someone else for fifty or more years? Similarly, the current twenty-year patent term draws criticism
for computer programs, as even this is too long to own the market.[88] For this reason, I propose a term
limit of at most ten years, perhaps even as few as five years.

53. Such a change would obviously need to be a gradual one. It would be grossly unfair to tell someone who
has obtained a patent that his term is being cut to between five and ten years. As such, the new term
limit must be “grandfathered” into practice, with each copyrighted program in the first year having a
term equal to twenty years–the maximum term of software patent applications already submitted to the
United States Patent Office. Accordingly, to stay equal with the extension of the patent term, each
subsequent year the length of the copyright term will decrease by one year until the desired term is
reached. Copyrights issued after this date will have a term length equal to five or ten years, whichever is
chosen as the shortened term length. While such a procedure may seem cumbersome, it will ensure that
no one will lose any present protection during implementation of the new term.

VI. Response to Critics

54. Opinions abound as to how computer programs should be handled in the intellectual property realm.

They range from maintaining the status quo, believing it to be the best option, to looking to a market-
oriented approach at providing legal protection.[89] Each of these options has a logical justification. I
believe, however, that many of these views steer us away from the intellectual property forum in which
the inventive/creative know-how of computer programs traditionally falls. For those who believe that the
current practice is not troubling, I ask: how do you justify granting patent protection to something which
has already been granted copyright protection? The obvious response is that it is not really the computer
program being patented. I, however, strongly disagree. It is the novelty of the program, what its text
contains, which is the essence of the invention. Were someone to concede that perhaps it is the computer
program at heart which is being protected, he would likely still say that things work the way they do
because the program is claimed as a machine. I have trouble with this justification, as I see it to be
merely a form-over-substance distinction.

55. For temporary harmony’s sake, let us presume that the average critic of my proposal has his own plan
which involves some type of approach besides the current patent protection approach. Putting aside my
concern of straying from the intellectual property arena, the general mixing of two different fields would
seem to complicate matters indefinitely: it adds together yet one more set of rules to follow when our
present legal system never contemplated computer programs. Perhaps readily apparent to the reader is
that these differences in approach are largely philosophically oriented toward the question of into what
category (or categories) protection for computer programs belong. Putting aside these philosophical
differences, there are other areas for possible disagreement with my four part approach.

56. The most sweeping part of my proposal is likely to be seen as bringing 100% protection for computer
programs under the protection of Title 17–the copyright title. In reality, however, the copyright laws
have already made provisions for computer programs, including specific mention that they are covered
by copyright laws. The first part of my proposal merely acts on Congress’ decision to include computer
programs under the protection of the copyright laws. Admittedly, extensive statute modifications and/or
additions to Title 17 are needed; however, the pattern for such changes can be found in the pertinent
existing patent statutes. Therefore, the end result would be much easier to achieve than it may sound.

57. The second part of my proposal, giving the Federal Circuit jurisdiction of all computer program
copyright infringement cases, may also appear to many as too ambitious a suggestion. I agree that it
might sound daunting, but in actual day-to-day practice there will be only a minor ripple effect.[90] The
Federal Circuit has jurisdiction of all cases with issues arising under patents. The current practice of
merely claiming a computer program as a machine and seeking (and/or obtaining) a patent has already
forced the Federal Circuit to deal with the same issues I propose “giving” to them. So, while it may
sound dramatically different, all that differs is the statement of jurisdiction.

58. My proposal to bring computer program copyright infringement cases within the jurisdiction furthers the
third part: using the doctrine of equivalents to determine copyright infringement of computer programs.
As explained above, the doctrine of equivalents is a judicially created doctrine implemented to focus on
the equitable aspects of patent infringement. The Federal Circuit is not only familiar with this doctrine,
but it must examine the doctrine in virtually any case of patent infringement to see if the accused device
non-literally infringes the patented device. For reasons already presented, I feel the doctrine of
equivalents is the best infringement test to deal with the myriad of problems associated with computer
program copyright infringement. I do agree that this is not the most well known doctrine throughout the
country. In fact, because the regional circuits no longer hear patent cases, they are virtually unfamiliar
with the doctrine’s application. Because of this, parts two and three of my proposal flow from one
another.[91]

59. The fourth part of the proposal, and perhaps most complicated to implement, is limiting the copyright
term for computer programs to between five and ten years. Above I discussed the reasons a shorted
copyright term seemed ideal. I also described a process for the gradual achievement of this term. In
theory, this is the least complicated part of my proposal, merely shortened the term period; however, in
practicality, it will be a lengthy processes. For this reason, I expect many to object to this aspect of my
proposal. However, I challenge them to find a more applicable and fair approach to computer program
copyright terms than one which is much shorter than the present term, and one whose implementation
does not cause anyone to lose current protection for his program, whether it be copyright or patent.

60. Certainly other criticisms of this proposal are likely to emerge. This discussion does not purport to be
exhaustive, it merely attempts to address the most anticipated objections.

VII. Conclusion

61. Computer programs are an integral part of our day to day lives. Because of this, there is great incentive

to create programs before others and obtain some form of intellectual property protection for the
creation. Many would agree that the current scheme in place for such protection is flawed.[92] I have
presented a proposal which, from what I can tell, has not yet been explored. It attempts to work within
the framework set forth by Congress, yet also attempts to take into account the uniqueness of computer
programs. Nothing in our current regime is prepared to handle the intellectual property protection of
computer programs, nor is it expected to, as computer programs were never anticipated when our basic
intellectual property law was created. While there is no set “way” to handle computer programs,
Congress has made the decision that computer programs are to be covered by copyright protection. We
cannot simply ignore that. As indicated previously, copyright law as it is today is not sufficient to
protect computer programs; the law, therefore, must be modified. The proposed modifications include:
1) clearly bring computer programs under the umbrella of copyright law and end the current “machine”
claims for computer programs permissible in patent law; 2) grant the Federal Circuit jurisdiction to hear
all appeals dealing with computer program copyright infringement issues; 3) use the doctrine of
equivalents as a determination for non-literal copyright infringement of an individual’s computer
program; and 4) shorten the term length of copyright protection to between five and ten years.

* J.D., University of Virginia; M.S.T., University of Florida; B.S., Fordham University. The author is currently employed as a law clerk for
the Honorable Paul R. Michel of the United States Court of Appeals for the Federal Circuit.

[1] This article was written prior to commencement of a clerkship for the Honorable Paul R. Michel of the Court of Appeals for the Federal
Circuit and does not reflect any work or opinions associated therewith. The views expressed here are solely those of the author and not of
Judge Michel or other members of the Federal Circuit.

[2] In order for an invention to be patentable, it must be new, useful, and unobvious to one having ordinary skill in the art at the time the
invention was made. These requirements are set forth in 35 U.S.C., §§ 102, 101, and 103, respectively. Section 101 deals with the
“usefulness” of the invention, and Congress has determined that for something to be “useful” it must be either a process, machine,
manufacture, or composition of matter. 35 U.S.C. § 102, the novelty requirement, and § 103, the non-obvious requirement, will not be
discussed further in this paper.

[3] While there were some cases that led to the development of such things as the mathematical algorithm exception and the (former) business
method exception to § 101, it was the advent of twentieth century technology which really put the statute to the test—both in the biological
and physical realms—as many of today’s technological advances had not even been anticipated by the Patent Act of 1952.

[4] Pub. L. No. 96-517, 94 Stat. 3015, 3028 (amending 17 U.S.C. §§ 101, 117, regarding computer programs), enacted December 12, 1980.

[5] The primary rationale behind this is the fact that computer programs are written in “code,” which is ultimately a string of letters, numbers,
and symbols, the traditional subject matter of copyright protection, which the computer translates into its own binary “language.”

[6] In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994) (en banc).

[7] Id. at 1544.

[8] This case was argued on the well known fact that a mathematical algorithm is not patentable, with the Federal Circuit ultimately deciding
that this invention was not merely such an algorithm, as the data changed form (drawing largely on the Supreme Court’s earlier opinion in
Diamond v. Diehr, 450 U.S. 175 (1981), which included “a structure or process which, when considered as a whole, is performing a function
which the patent laws were designed to protect (e.g., transforming or reducing an article to a different state or thing), then the claim satisfies
the requirements of § 101.” Id. at 192 (emphasis added). A parallel can be seen here with the transition into the patentability of computer
programs as part of an invention . . . the claim is worded such that it is not the program itself being claimed, rather it is “means for” language
which exists in the claim. However, the “means” provided for in the specification is a computer programmed with certain commands.

[9] Copyright protection for computer programs has long been considered unsatisfactory. The minimal infringement protection afforded
under current copyright law and a copyright’s lengthy term have encouraged creators to seek patent protection.

[10] 149 F.3d 1368 (Fed. Cir. 1998).

[11] 172 F.3d 1352 (Fed. Cir. 1999).

[12] State Street, 143 F.3d at 1370.

[13] Id. at 1371 (emphasis added).

[14] Id. at 1371-72. While the claim was written in means-plus-function form, in its interpretation of the claim, the court identified these to be
the components of the claim.

[15] In re Alappat, 33 F.3d, at 1537. In Alappat, simply put, the invention related generally to a means for creating a smooth wave-form
display in a digital oscilloscope. Thus, the final product was something visible—an image on an oscilloscope.

[16] Id. at 1544. This was one of the observations made by the court in Alappat. Even though Alappat did not explicitly deal with computer
programs or software, this was often applied as the test for patentability of a computer program.

[17] This exception has been reiterated often by the Supreme Court, finding that mathematical algorithms standing alone are nothing more
than abstract ideas. Diamond v. Diehr, 450 U.S. 175 (1981). The Federal Circuit has interpreted this exception to be overcome if the
mathematical algorithm is merely part of a system or machine which produces “a useful, concrete and tangible result,” i.e., the algorithm is
applied in a “useful” way. Alappat, 33 F.3d, at 1544. The mathematical algorithm will be dealt with briefly below.

[18] State Street, 149 F.3d, at 1371-72. The court examined the independent claim of the patent to see if it fell within one of the four
categories of statutory subject matter: process, machine, manufacture, or composition of matter.

[19] Id. at 1372.

[20] To many, such an outcome has seemed troubling, as it is really the computer program/software which constitutes the novelty of the
invention, and the program itself is in code—a string of numbers, letters, and symbols. Further, code is covered by the copyright laws, yet
here, it is also granted patent protection, including the doctrine of equivalents, which will render other “systems” containing similar programs
an infringement. Later in this paper I will explain in detail this opinion and how the doctrine of equivalents arguably expands patent
protection.

[21] The court later discussed the “business method exception,” finding that such an exception did not exist. However, the business method
aspect of the opinion is not relevant to the discussion.

[22] State Street, 149 F.3d, at 1373. See also Alappat, 33 F.3d, at 1544; Diehr, 450 U.S. 175.

[23] The language courts often use to identify some type of practical application is “a useful, concrete and tangible result.” Alappat, 33 F.3d,
at 1544.

[24] State Street, 149 F.3d, at 1368. Notice that the court takes the language used in Alappat and applies it to the invention in dispute,
focusing on the change in form of the information. As a side note, the primary issue for the Federal Circuit in Alappat was the mathematical
algorithm.

[25] State Street, 149 F.3d, at 1373.

[26] Id.

[27] AT&T Corp. v. Excel Comunications Mktg., Inc., 172 F.3d 1352 (Fed. Cir. 1999).

[28] Id. at 1360.

[29] Id. at 1354.

[30] Id. at 1358.

[31] Id. at 1357. While the court explains that it is merely applying State Street and its forebearers, the profound difference in the language of
the claims in State Street and Excel is worth noting. AT&T claims “a method for use in a . . . system . . . comprising the steps of:
generating….” This is in stark contrast to the means-plus-function language of State Street. As a result, it would seem that all an applicant
must do to comply with § 101 is to claim the steps the computer program itself follows.

[32] The problems and inconsistencies inherent in trying to grant both patent and copyright protection to a single subject are readily apparent.
However, this paper will focus on patent and copyright protection separately.

[33] At least as far as § 101 is concerned.

[34] As if this is not enough, matters are further complicated by the fact that the computer program is often the “novel” aspect of the
invention.

[35] Or sounds, images, etc.

[36] This argument implies that software should be brought under the copyright umbrella. I will discuss further below why this should be the
case, with additional modifications.

[37] Denis S. Karjala, Copyright Protection of Computer Program Structure, 64 BROOK. L. REV. 519, 532 (1998).

[38] 17 U.S.C. § 101 (1980) (emphasis added).

[39] Computer Assocs. Int’l., Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992). In this decision the court also makes the more specific
statement that “[i]t is now well settled that the literal elements of computer programs, i.e., their source and object codes are the subject of
copyright protection.” Id. at 702 (citing Whelan Assocs., Inc. v. Jaslow Dental Lab, Inc., 797 F.2d 1222, 1233 (3d Cir. 1986), cert. denied,
479 U.S. 1031 (1987)). Source code is what the layperson thinks of as what the computer programmer types using a computer language, such
as BASIC, FORTRAN, C, C++, etc. Object code is the result of “compiling” the source code, i.e., the binary language, composed of ones and
zeros, through which the computer receives its instructions. Id. at 698 (citing Whelan, 797 F.2d at 1230-31).

[40] Marci A. Hamilton & Ted Sabety, Computer Science Concepts in Copyright Cases: the Path to a Coherent Law, 10 HARV. J. L. & TECH.
239, 243 (1997).

[41] Anthony Rowley, Jr., Note: Dynamic Copyright Law: Its Problems and A Possible Solution, 11 HARV. J. L. & TECH. 481 (1998).

[42] Limited in the sense that protection is provided for the elements of original expression.

[43] 17 U.S.C. § 302(a) (1994). Certain works are accorded terms with a specific number of years from creation.

[44] I.e., restrictionless.

[45] Especially given the current confusing status of the various elements of a computer program in copyright law.

[46] I.e., district and the numbered circuit courts.

[47] Softel, Inc. v. Dragon Med. & Scientific Communications, Inc., 118 F.3d 955, 963 (2d Cir. 1997) (citing Computer Assocs. Int’l., Inc. v.
Altai, Inc. 982 F.2d 693, 701 (2d Cir. 1992); see also Smith v. Jackson, 84 F.3d 1213, 1218 (9th Cir. 1996); Three Boys Music Corp. v. Bolton,
212 F.3d 477, 481 (9th Cir. 2000); Bouchat v. Baltimore Ravens, Inc., WL 1468850, *4 (4th Cir. 2000); Lotus Dev. Corp. v. Borland Int’l,
Inc., 49 F.3d 807 (1st Cir. 1995). But see Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1442 (9th Cir. 1994) (holding that
comparing an interface as a whole for substantial similarity must fail).

[48] Id.

[49] The Second, Fourth, and Seventh Circuits use the “substantially similar” test to infer access to the copyrighted work. See Bouchat, WL
1468850 at *4; Gaste v. Kaiserman, 863 F.2d 1061, 1068 (2d Cir. 1988); Ty, Inc. v. GMA Accessories, Inc., 132 F.3d 1167, 1170 (7th Cir.
1997).

[50] See, e.g., Whelan (3d Cir.) and Altai (2d Cir.), supra note 39.

[51] MELVILLE B. NIMMER, NIMMER ON COPYRIGHTS, 4-13 § 13.03(F). This is due to the difference in copyright protection between
“ideas” and “expression.”

[52] Id.

[53] Id.

[54] Id.

[55] 17 U.S.C. §§ 101, 117.

[56] I will discuss the doctrine of equivalents in more detail below.

[57] Ensuring that creators have adequate economic incentive to produce such protected works and preserving the public domain such that
competition and creativity are not stifled.

[58] Further justifications and issues can be found in the section entitled “Why Patent Protection for Software is Problematic."

[59] I will not reiterate in full my arguments, as they have been made above, nor shall I discuss further the fact that Title 17 of the United
States Code states that computer programs are to be copyrighted.

[60] Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980).

[61] There also exists support for the opinion that a computer program is merely a mathematical algorithm, led by Justice Stevens in his
dissent in Diamond v. Diehr, 450 U.S. 175, 219 (1980) (Stevens, J. dissenting). I agree with Justice Stevens’ analysis; however, I think the
explanation of a computer program as text fits more within my proposal, leaving the mathematical algorithm debate for another day.

[62] Perhaps my opinion that a trumped up re-situating of a program to make it into a “machine” is not patentable is merely the result of an
ideological difference between myself and others who find computer programs patentable. Regardless of any ideological differences, I feel
my position holds the trump card: Congress has directed that computer programs are to be covered by copyright protection.

[63] This can be seen merely by looking at the section entitled “Why Current Copyright Protection for Computer Programs is Problematic,”
where the current state of copyright infringement is described—the inconsistencies between circuits in the application of the “substantially
similar” test for indirect infringement.

[64] Not only the United States, but the entire world.

[65] Such a suggestion seems most reasonably to promote consistent application of the laws, especially in today’s Internet based
society, where computer programs can be sent to all fifty states with the simple click of a mouse.

[66] That is, the regional circuit courts have no jurisdiction.

[67] I.e., on a civil action arising under any Act of Congress relating to patents, plant variety protection, copyright and trademark laws. 28
U.S.C. § 1338 states:

Patents, plant variety protection, copyrights, mask works, designs, trademarks, and unfair competition

(a) The district courts shall have original jurisdiction of any civil action arising under any Act of
Congress relating to patents, plant variety protection, copyrights and trademarks. Such jurisdiction shall
be exclusive of the courts of the states in patent, plant variety protection and copyright cases.

(b) The district courts shall have original jurisdiction of any civil action asserting a claim of unfair
competition when joined with a substantial and related claim under the copyright, patent, plant variety
protection or trademark laws.

(c) Subsections (a) and (b) apply to exclusive rights in mask works under chapter 9 of title 17, and to
exclusive rights in designs under chapter 13 of title 17, to the same extent as such subsections apply to
copyrights.

[68] Christianson v. Colt Indus. Operating Corp., 486 U.S. 800, 809 (1988).

[69] See Aerojet-General v. Machine Tool Works, Oerlikon-Buehrle, Ltd., 895 F.2d 736 (Fed. Cir. 1990) (en banc). For a more complete
explanation, see ROBERT L. HARMON, PATENTS AND THE FEDERAL CIRCUIT, 785-88 (4th ed. 1998).

[70] I do concede that the number of cases presented to the Federal Circuit would likely increase, but the substance of these cases would
largely remain the same.

[71] The application of the doctrine of equivalents will be explained in detail in the following section.

[72] That is, the issue of determining infringement of a computer program under the doctrine of equivalents.

[73] While the doctrine of equivalents is a judicially created test for non-literal patent infringement, I believe it can provide the added
protection computer programs call for.

[74] See HARMON, supra note 69, at 17. The doctrine of equivalents is described in detail in Graver Tank & Mfg. Co. v. Linde Air Prods. Co.,
339 U.S. 605 (1950).

[75] “Infringe” is defined in 35 U.S.C. § 271(a): “whoever without authority makes, uses or sells any patented invention, within the United
States during the term of the patent therefor, infringes the patent.”

[76] HARMON, supra note 69, at 16.

[77] Id. at 17.

[78] Id.

[79] Graver Tank & Mfg. Co. v. Linde Air Prods. Co., 339 U.S. 605.

[80] It is, of course, non-literal infringement, but infringement nonetheless.

[81] Penwalt Corp. v. Durand-Wayland, Inc., 833 F.2d 931 (Fed. Cir. 1987).

[82] HARMON, supra note 69, at 276-77. See also Hilton Davis Chem. Co. v. Warner-Jenkinson Co., 62 F.3d 1512 (Fed. Cir. 1994) (en banc),
rev’d. 520 U.S. 17 (1997). The Federal Circuit’s decision in Hilton Davis was reversed by the Supreme Court; however, the Court left
specific language of the tests—whether function-way-result or insubstantial differences—up to the Federal Circuit.

[83] Such a change did not really alter things much, as the substantiality of the differences between the two devices could be determined by
application of the function-way-result test.

[84] Dolly, Inc. v. Spalding & Evenflo Co., 16 F.3d 394 (Fed. Cir. 1994). See also Upjohn Co. v. MOVA Pharm. Corp., 225 F.3d 1306 (Fed.
Cir. 2000).

[85] Insituform Tech., Inc. v. Cat Contr., Inc., 156 F.3d 1199 (Fed. Cir. 1998).

[86] As identified by Professor Nimmer.

[87] Pamela Samuelson et. al., A Manifesto Concerning the Legal Protection of Computer Programs, 94 COLUM. L. REV. 2308, 2315 (1994).

[88] In fact, sometimes advances can be made so quickly, that once a person goes through the long patent application process, the program
could be obsolete; however, then competitors who did not know the product was being patented would have to pay incredible damages, as
they are likely to use any technology that is available. One would think that after a single judgment for millions of dollars, a company would
be much less eager to jump into the market for fear that it would unknowingly use a program already patented by somebody else.

[89] Samuelson et al., supra note 87, at 2314. Samuelson specifically explains that the law should only intervene when necessary to avoid
market failure. Id.

[90] Of course, I risk incurring the wrath of the Federal Circuit by seeming as though I wish to increase its case load; however, I will illustrate
why the court should not be too concerned.

[91] I thought the doctrine of equivalents would be the best test for computer program copyright infringement first, and then the concept of
giving the Federal Circuit jurisdiction seemed to make the transition even smoother. So, if you will, part three came before part two.

